#### MGA-62563

# Avago Technologies MGA-62563 Current-Adjustable Low Noise Amplifier

#### Description

This E-pHEMT RFIC is an easy-to-use high linearity low noise amplifier built-in with Smart Bias function. For Smart Bias function, one external resistor is used to set the bias current taken by the device over a wide range. This allows the designer to use the same part in several circuit positions and tailor the linearity performance and current consumption to suit each position.

It is ideal as an IF amplifier or driver amplifier for Cellular/PCS/W-CDMA base stations, WLL, Fixed Wireless Access, Wireless LAN and other high performance applications in the 0.1 to 3 GHz frequency range.



Lifecycle status: Active



#### **Features**

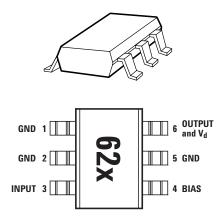
Typical performance at 500 MHz 3V/55mA is NF=1.1dB, OIP3=32.5dBm, P1dB=17.4dBm and Ga=22dB

#### MGA-62563

## Current-Adjustable, Low Noise Amplifier



# **Data Sheet**


#### **Description**

Avago's MGA-62563 is an economical, easy-to-use GaAs MMIC amplifier that offers excellent linearity and low noise figure for applications from 0.1 to 3 GHz. Packaged in an miniature SOT-363 package, it requires half the board space of a SOT-143 package.

One external resistor is used to set the bias current taken by the device over a wide range. This allows the designer to use the same part in several circuit positions and tailor the linearity performance (and current consumption) to suit each position.

The output of the amplifier is matched to  $50\Omega$  (below 2:1 VSWR) across the entire bandwidth and only requires minimum input matching. The amplifier allows a wide dynamic range by offering a 0.9 dB NF coupled with a +32.9 dBm Output IP3. The circuit uses state-of-the-art E-pHEMT technology with proven reliability. On-chip bias circuitry allows operation from a single +3V power supply, while internal feedback ensures stability (K>1) over all frequencies.

#### **Pin Connections and Package Marking**



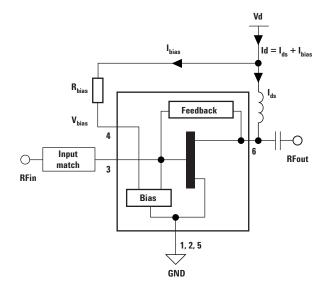
Note:

Package marking provides orientation and identification:

"62" = Device Code

"x" = Date code indicates the month of manufacture.

#### **Features**


- Single +3V supply
- High linearity
- Low noise figure
- Miniature package
- Unconditionally stable

#### **Specifications**

at 500 MHz; 3V, 60 mA (Typ.)

- 0.9 dB noise figure
- 32.9 dBm OIP3
- 22 dB gain
- 17.8 dBm P<sub>1dB</sub>

#### **Simplified Schematic**



#### MGA-62563 Absolute Maximum Ratings<sup>[1]</sup>

|                         |                                        |       | Absolute |
|-------------------------|----------------------------------------|-------|----------|
| Symbol                  | Parameter                              | Units | Maximum  |
| V <sub>d</sub>          | Device Voltage (pin 6) <sup>[2]</sup>  | V     | 6        |
| I <sub>d</sub>          | Device Current (pin 6) <sup>[2]</sup>  | mA    | 100      |
| P <sub>in</sub>         | CW RF Input Power (pin 3)[3]           | dBm   | 21       |
| I <sub>ref</sub>        | Bias Reference Current (pin 4)         | mA    | 12       |
| P <sub>diss</sub>       | Total Power Dissipation <sup>[4]</sup> | mW    | 600      |
| T <sub>CH</sub>         | Channel Temperature                    | °C    | 150      |
| T <sub>STG</sub>        | Storage Temperature                    | °C    | 150      |
| $\theta_{\text{ch\_b}}$ | Thermal Resistance <sup>[5]</sup>      | °C/W  | 97       |
|                         |                                        |       |          |

#### Notes:

- Operation of this device above any one of these parameters may cause permanent damage.
- 2. Bias is assumed at DC quiescent conditions.
- 3. With the DC (typical bias) and RF applied to the device at board temperature  $T_B = 25$ °C.
- 4. Total dissipation power is referred to board (package belly) temperature  $T_B = 85^{\circ}C$ ,  $P_{diss}$  is required to derate at 10 mW/°C for  $T_B > 85^{\circ}C$ .
- 5. Thermal resistance measured using 150°C Liquid Crystal Measurement method.

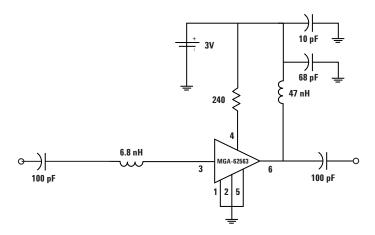



Figure 1. Test circuit of the 0.5 GHz production test board used for NF, Gain and OIP3 measurements. This circuit achieves a trade-off between optimal NF, Gain, OIP3 and input return loss. Circuit losses have been de-embedded from actual measurements.

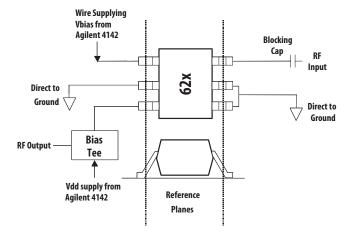



Figure 1b. A diagram showing the connection to the DUT during an S and Noise parameter measurement using an automated tuner system.

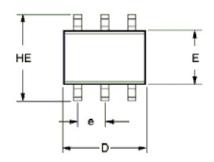
#### **MGA-62563 Electrical Specifications**

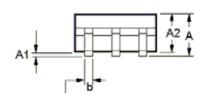
 $T_C = 25$ °C,  $Z_O = 50\Omega$ ,  $V_d = 3V$  (unless otherwise specified)

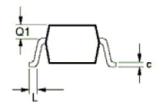
| Symbol                                                       | Parameters and Test Conditions                                       | Freq         | Units     | Min. | Тур. | Max. | Std Dev |
|--------------------------------------------------------------|----------------------------------------------------------------------|--------------|-----------|------|------|------|---------|
| ld <sup>[1,2]</sup>                                          | Device Current                                                       |              | mA        | 47   | 62   | 77   | 2.09    |
| NF <sub>test</sub> [1,2]                                     | Noise Figure in test circuit [1]                                     | f = 0.5 GHz  | dB        |      | 0.93 | 1.4  | 0.06    |
| G <sub>test</sub> [1,2]                                      | Associated Gain in test circuit <sup>[1]</sup>                       | f = 0.5 GHz  | dB        | 20.4 | 22   | 23.4 | 0.36    |
| OIP3 <sub>test</sub> [1,2]                                   | Ouput 3 <sup>rd</sup> Order Intercept in test circuit <sup>[1]</sup> | f = 0.5 GHz  | dBm       | 30   | 32.9 |      | 0.51    |
| NF <sub>50ý</sub> <sup>[3]</sup>                             | Noise Figure in $50\Omega$ system                                    | f = 0.1 GHz  | dB        |      | 1.1  |      |         |
|                                                              |                                                                      | f = 0.2 GHz  |           |      | 1.0  |      |         |
|                                                              |                                                                      | f = 0.5  GHz |           |      | 0.8  |      |         |
|                                                              |                                                                      | f = 1.0  GHz |           |      | 0.9  |      | 0.06    |
|                                                              |                                                                      | f = 1.5 GHz  |           |      | 1.0  |      |         |
|                                                              |                                                                      | f = 2.0  GHz |           |      | 1.2  |      |         |
|                                                              |                                                                      | f = 2.5  GHz |           |      | 1.3  |      |         |
|                                                              |                                                                      | f = 3.0 GHz  |           |      | 1.5  |      |         |
| S <sub>21</sub>   <sup>2</sup> <sub>50ý</sub> <sup>[3]</sup> | Associated Gain in $50\Omega$ system                                 | f = 0.1 GHz  | dB        |      | 23.5 |      |         |
|                                                              |                                                                      | f = 0.2  GHz |           |      | 23   |      |         |
|                                                              |                                                                      | f = 0.5 GHz  |           |      | 22   |      |         |
|                                                              |                                                                      | f = 1.0 GHz  |           |      | 20   |      | 0.36    |
|                                                              |                                                                      | f = 1.5 GHz  |           |      | 17   |      |         |
|                                                              |                                                                      | f = 2.0  GHz |           |      | 15.5 |      |         |
|                                                              |                                                                      | f = 2.5  GHz |           |      | 14   |      |         |
|                                                              |                                                                      | f = 3.0 GHz  |           |      | 13   |      |         |
| OIP3 <sub>50ý</sub> <sup>[3]</sup>                           | Output $3^{rd}$ Order Intercept Point in $50\Omega$ system           | f = 0.1 GHz  | dBm       |      | 34.7 |      |         |
|                                                              |                                                                      | f = 0.2 GHz  |           |      | 34.7 |      |         |
|                                                              |                                                                      | f = 0.5 GHz  |           |      | 34.8 |      |         |
|                                                              |                                                                      | f = 1.0 GHz  |           |      | 33.5 |      | 0.51    |
|                                                              |                                                                      | f = 1.5 GHz  |           |      | 33   |      |         |
|                                                              |                                                                      | f = 2.0  GHz |           |      | 32.3 |      |         |
|                                                              |                                                                      | f = 2.5  GHz |           |      | 32   |      |         |
|                                                              |                                                                      | f = 3.0 GHz  |           |      | 31   |      |         |
| P1dB <sub>50ý</sub> <sup>[3]</sup>                           | Output Power at 1dB Gain Compression in $50\Omega$                   | system       | f = 0.1 C | Hz   | dBm  |      | 18      |
|                                                              |                                                                      | f = 0.2  GHz |           |      | 18   |      |         |
|                                                              |                                                                      | f=0.5 GHz    |           |      | 18   |      |         |
|                                                              |                                                                      | f = 1.0  GHz |           |      | 17.6 |      |         |
|                                                              |                                                                      | f = 1.5 GHz  |           |      | 17.6 |      |         |
|                                                              |                                                                      | f = 2.0  GHz |           |      | 17.7 |      |         |
|                                                              |                                                                      | f = 2.5  GHz |           |      | 17.9 |      |         |
|                                                              |                                                                      | f = 3.0  GHz |           |      | 17.7 |      |         |

#### Notes:

<sup>1.</sup> Guaranteed specifications are 100% tested in the production test circuit as shown in Figure 1, the typical value is based on measurement of at least 500 parts from three non-consecutive wafer lots during initial characterization of this product.


<sup>2.</sup> Circuit achieved a trade-off between optimal NF, Gain, OIP3 and input return loss.


<sup>3.</sup> Parameter quoted at  $50\Omega$  is based on measurement of selected typical parts tested on a  $50\Omega$  input and output test fixture.


## **Ordering Information**

| Part Number    | No. of Devices | Container      |
|----------------|----------------|----------------|
| MGA-62563-TR1G | 3000           | 7" Reel        |
| MGA-62563-TR2G | 10000          | 13"Reel        |
| MGA-62563-BLKG | 100            | antistatic bag |

## SOT-363/SC-70 (JEDEC DFP-N) Package Dimensions







| Symbol | Dimensions<br>Min (mm) | Max (mm)  |
|--------|------------------------|-----------|
| E      | 1.15                   | 1.35      |
| D      | 1.80                   | 2.25      |
| HE     | 1.80                   | 2.40      |
| A      | 0.80                   | 1.10      |
| A2     | 0.80                   | 1.00      |
| A1     | 0.03                   | 0.10      |
| e      | 0.650 BCS              | 0.650 BCS |
| b      | 0.15                   | 0.30      |
| С      | 0.10                   | 0.20      |
| L      | 0.10                   | 0.30      |